
© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004139 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1026

“Performance of Frequent Pattern-Growth

hierarchy for bulky and forceful Data Set and

advance effectiveness

1Mrs. Lubna,2Mr.Rahul Moriwal,3Dr.Amit khare
 Acropolis Institute of Technology and Research, Indore,

 Department of computer science engineering.

 Abstract: FP-growth method is a efficient algorithm to mine frequent patterns, in spite of long or short frequent patterns.

By using compact tree structure and partitioning-based, divide-and-conquer searching method, it reduces the search costs

substantially. But just as the analysis in Algorithm , in the process of FP-tree construction, it is a strict serial computing

process. algorithm performance is related to the database size, the sum of frequent patterns in the database: ω. this is a

serious bottleneck. People may think using distributed parallel computation technique or multi-CPU to solve this problem.

But these methods apparently increase the costs for exchanging and combining control information, and the algorithm

complexity is also greatly increased, cannot solve this problem efficiently. Even if adopting multi-CPU technique, raising

the requirement of hardware, the performance improvement is still limited.

Keyword: divide-and-conquer, partitioning-based, parallel, Projection, data mining, AI, Information.

INTRODUCTION: (1). we can create a temp database for

storing all the frequent items ordered by the list of frequent

items, Lwe call this temp database as Projection Database

(or PDB for short), which is used for projecting, reduce the

expensive costs of individual node computation.

(2). we can project the PDB, two columns at a time.1 One

column (called current column) is used to computer the

count of each different item, the other (previous) column is

used to distinguish the node’s parent node of current

column. we can insert one level of nodes into the tree at a

time, not compute frequent items one by one. Then, the

algorithm performance is only related to the depth of tree,

namely the number of frequent items of the longest

transaction in the database η,

(3). because we only project two columns at a time, only

save the information of the current nodes and their parent

nodes, if there exist the case as follows: the current nodes’

parent nodes are identical, but their parent nodes’ parent

nodes are different, we couldn’t judge how to deal with it. If

we add their count regarding them as the same node,

 DEFINITION AND BASE FORMULATION :

conditional-pattern base (a “sub-database” which consists

of the set of frequent items occurring with the suffix

pattern), constructs its (conditional) FP-tree, and performs

mining recursively with such a tree. The pattern growth is

achieved via concatenation of the suffix pattern with the

new ones generated from a conditional FP-tree. Since the

frequent item set in any transaction is always encoded in the

corresponding path of the frequent-pattern trees, pattern

growth ensures the completeness of the result. our method is

not Apriori-like restricted generation-and-test but restricted

test only. The major operations of mining are count

accumulation and prefix path count adjustment, which are

usually much less costly than candidate generation and

pattern matching operations performed in most Apriori-like

algorithms. the search technique employed in mining is a

partitioning-based, divide-andconquer method rather than

Apriori-like level-wise generation of the combinations of

frequent itemsets. This dramatically reduces the size of

conditional-pattern base generated at the subsequent level

of search as well as the size of its corresponding conditional

FP-tree.

A performance study has been conducted to compare the

performance of FP-growth with two representative

frequent-pattern mining methods, Apriori (Agrawal and

Srikant, 1994) and Tree Projection (Agarwal et al., 2001),

FP-growth outperforms the Tree Projection algorithm. our

Ftree-based mining method has been implemented in the

DBMiner system and tested in large transaction databases in

industrial applications. Although FP-growth was first

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004139 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1027

proposed briefly in Han et al. (2000), this paper makes

additional progress as follows.

– The properties of FP-tree are thoroughly studied. we

point out the fact that, although it is often compact, FP-tree

may not always be minima.

– Some optimizations are proposed to speed up FP-growth,

for technique to handle single path FP-tree has been further

developed for performance improvements.

 – A database projection method has been developed to cope

with the situation when an FP-tree cannot be held in main

memory—the case that may happen in a very large

database.

– Extensive experimental results have been reported. We

examine the size of FP-tree as well as the turning point of

FP-growth on data projection to building FP-tree.

FREQUENT-PATTERN TREE: DESIGN AND

CONSTRUCTION

Let I ={a1, a2, . ..am} be a set of items, and a transaction

database DB=T1, T2, . . . , Tn, where Ti (i = [1 . . . n]) is a

transaction which contains a set of items in I . The support1

(or occurrence frequency) of a pattern A, where A is a set of

items, is the number of transactions containing A in DB. A

pattern A is frequent if A’s support is no less than a

predefined minimum support threshold, ξ .

A compact data structure can be designed based on the

following observations:

(1). Since only the frequent items will play a role in the

frequent-pattern mining, it is necessary to perform one scan

of transaction database DB to identify the set of frequent

items (with frequency count obtained as a by-product).

(2). If the set of frequent items of each transaction can be

stored in some compact structure, it may be possible to

avoid repeatedly scanning the original transaction database.

(3). If multiple transactions share a set of frequent items, it

may be possible to merge the shared sets with the number of

occurrences registered as count.

database

(1). If two transactions share a common prefix, according to

some sorted order of frequent items, the shared parts can be

merged using one prefix structure as long as the count is

registered properly. If the frequent items are sorted in their

frequency descending order, there are better chances that

more prefix strings can be shared. one may construct a

frequent-pattern tree as follows. a scan of DB derives a list

of frequent items, (f :4), (c:4), (a:3), (b:3), (m:3), (p:3)(the

number after “:” indicates the support), in which items are

ordered in frequency descending order. the root of a tree is

created and labeled with “null”.

(1). The scan of the first transaction leads to the

construction of the first branch of the tree:(f :1), (c:1), (a:1),

(m:1),(p:1). (2). For the second transaction, since its

(ordered) frequent item list f, c, a, b,m shares a common

prefix f, c, awith the existing path f, c, a,m, p the count of

each node along the prefix is incremented by 1, and one new

node (b:1) is created and linked as a child of (a:2) and

another new node (m:1) is created and linked as the child of

(b:1). (3). For the third transaction, since its frequent item

list f, bhares only the node f with the f prefix subtree, f ’s

count is incremented by 1, and a new node (b:1) is created

and linked as a child of (f :3).(4). The scan of the fourth

transaction leads to the construction of the second branch of

the tree, (c:1), (b:1), (p:1). (5). For the last transaction, since

its frequent item list f, c, a,m, pis identical to the first one,

the path is shared with the count of each node along the path

incremented by 1.

Definition (FP-tree). A frequent-pattern tree (or FP- tree

in short) is a tree structure

(1). It consists of one root labeled as “null”, a set of item-

prefix sub trees as the children of the root and a frequent-

item-header table.

(2). Each node in the item-prefix sub tree consists of three

fields: item-name, count, and node-link, where item-name

registers which item this node represents, count registers the

number of transactions represented by the portion of the

path reaching this node,

node-link links to the next node in the FP-tree carrying the

same item-name, or null if there is none.

(3). Each entry in the frequent-item-header table consists of

two fields,

(1) item-name

(2) head of node-link (a pointer pointing to the first node in

the FP-tree carrying the item-name).

Algorithm (FP-tree construction).

Input: A transaction database DB and a minimum support

threshold ξ.

Output: FP-tree, the frequent-pattern tree of DB.

Method: The FP-tree is constructed as follows.

(1). Scan the transaction database DB once. Collect F, the

set of frequent items, and the support of each frequent item.

Sort F in support-descending order as FList, the list of

frequent items.

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004139 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1028

(2). Create the root of an FP-tree, T , and label it as “null”.

For each transaction Trans in DB do the following. Select

the frequent items in Trans and sort them according to the

order of FList. Let the sorted frequent-item list in Trans be

where p is the first element and P is the remaining list. Call

insert tree. The function insert tree is performed as follows.

If T has a child N such that N.item-name = p.item-name,

then increment N’s count by 1; else create a new node N,

with its count initialized to 1, its parent link linked to T , and

its node-link linked to the nodes with the same item-name

via the node-link structure. If P is nonempty, call insert

tree(P, N) recursively.

 COMPLETENESS AND COMPAVTNESS OF FP-TREE

There are several important properties of FP-tree that can be

derived from the FP-tree construction process.

Given a transaction database DB and a support threshold ξ .

Let F be the frequent items in DB. For each transaction T ,

freq(T) is the set of frequent items in T , freq(T) = T, F,

and is called the frequent item projection of transaction T .

According to the Apriori principle, the set of frequent item

projections of transactions in the database is sufficient for

mining the complete set of frequent patterns, because an

infrequent item plays no role in frequent patterns.

Based on the FP-tree construction process, for each

transaction in the DB, its frequent item projection is mapped

to one path in the FP-tree. For a path a1a2 . . . ak from the

root to a node in the FP-tree, let cak be the count at the node

labeled ak and c k be the sum of counts of children nodes of

ak . According to the construction of the FP-tree, the path

registers frequent item projections of cak - c k transactions.

Therefore, the FP-tree registers the complete set of frequent

item projections without duplication. Based on this lemma,

after an FP-tree for DB is constructed, it contains the

complete information for mining frequent patterns from the

transaction database. only the FP-tree is needed in the

remaining mining process, regardless of the number and

length of the frequent patterns. Based on the FP-tree

construction process, for each transaction in the DB, its

frequent item projection is mapped to one path in the FP-

tree. For a path a1 a2 . . . ak from the root to a node in the

FP-tree, let cak be the count at the node labeled ak and c k

be the sum of counts of children nodes of ak . the path

registers frequent item projections of cak - c k transactions

Therefore, the FP-tree registers the complete set of frequent

item projections without duplication. Based on this lemma,

after an FP-tree for DB is constructed, it contains the

complete information for mining frequent patterns from the

transaction database. only the FP-tree is needed in the

remaining mining process, FP-tree is a highly compact

structure which stores the information for frequent-pattern

mining. Since a single path “a1→a2 →a3→ a4…→” an in

the a1-prefix sub tree registers all the transactions whose

maximal frequent set is in the form of “a1→a2 →a3→

a4…→ak” for any 1≤k≤n the size of the FP-tree is

substantially.

 Connect-4 used in Max Miner (Bayardo, 1998), which

contains 67,557 transactions with 43 items in each

transaction, when the support threshold is 50% (which is

used in the Max Miner experiment.

 MINING FREQUENT PATTERNS USING FP-TREE

Construction of a compact FP-tree ensures that subsequent

mining can be performed with a rather compact data

structure. this does not automatically guarantee that it will

be highly efficient since one may still encounter the

combinatorial problem of candidate generation if one

simply uses this FP-tree to generate and check all the

candidate patterns. we study how to explore the compact

information stored in an FP-tree, develop the principles of

frequent-pattern growth by examination of our running

example,

 PRINCIPLES OF FREQUENT-PATTERN GROWTH

FOR FP-TREE MINING

Property (1) (Node-link property). For any frequent item ai

, all the possible pattern containing only frequent items and

ai can be obtained by following ai ’s node-links, starting

from ai ’s head in the FP-tree header.

Property (2) (Prefix path property). To calculate the

frequent patterns with suffix ai , only the prefix sub pathes

of nodes labeled ai in the FP-tree need to be accumulated,

and the frequency count of every node in the prefix path

should carry the same count as that in the corresponding

node ai in the path.

Property (3) (Fragment growth). Let α be an item set in

DB, B be α’s conditional pattern base ,β be an item set in B.

Then the support of α Uβ in DB is equivalent to the support

of β in B.

TRADITIONAL FREQUENT PATTERN GROWTH

ALGORITHM

Let I ={a1, a2, … am} be a set of items, and a transaction

database DB =(T1, T2, …Tn), where Ti (i∈ [1..n]) is a

transaction which contains a set of items in I. Every

transaction has a key label, called TID. The support1 (or

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004139 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1029

occurrence frequency) of a pattern A, which is a set of

items, is the number of transactions containing A in DB. A

is a frequent pattern if the support of A is no less than a

predefined minimum support threshold ξ. Given a

transaction database DB and a minimum support threshold,

ξ, the problem of finding the complete set of frequent

patterns is called the frequent pattern mining problem.

(1). Since only the frequent items will play a role in the

frequent pattern mining, it is necessary to perform one scan

of DB to identify the set of frequent items (with frequency

count obtained as a by-product).

(2). If we store the set of frequent items of each transaction

in some compact structure, it may avoid repeatedly scanning

of DB.

(3). If multiple transactions share an identical frequent item

set, they can be merged into one with the number of

occurrences registered as count. It is easy to check whether

two sets are identical if the frequent items in all of the

transactions are sorted according to a fixed order.

(4). If two transactions share a common prefix, according to

some sorted order of frequent items, the shared parts can be

merged using one prefix structure as long as the count is

registered properly. If the frequent items are sorted in their

frequency descending order, there are better chances that

more prefix strings can be shared. Based on the above

observations, we can get the definition of FP-tree:

(1). It consists of one root labeled as “null”, a set of item

prefix subtrees as the children of the root, and a frequent-

item header table.

(2). Each node in the item prefix subtree consists of three

fields: item-name, count, and node-link, where item-name

registers which item this node represents, count registers the

number of transactions represented by the portion of the

path reaching this node, and node-link links to the next node

in the FP-tree carrying the same item-name, or null if there

is none.

(3). Each entry in the frequent-item header table consists

of two fields, (1) item-name and (2)head of node-link,

which points to the first node in the FP-tree carrying the

item-name. Based on this definition, we have the following

FP-tree construction algorithm.

Algorithm (FP-tree construction)

Input: A transaction database DB and a minimum support

threshold ξ.

Output: Its frequent pattern tree, FP-Tree

Method: The FP-tree is constructed in the following steps.

(1). Scan the transaction database DB once. Collect the set

of frequent items F and their supports. Sort F in support

descending order as L, the list of frequent items.

(2). Create the root of an FP-tree, T, and label it as “null”,

for each transaction in DB Select and sort the frequent

items in transaction according to the order of L. Let the

sorted frequent item list in transaction be where p is the first

element and P is the remaining list. Call insert tree .

Function insert tree

If T has a child N such that N.item-name = p.item-name

Then increment N’s count by 1;

Else do {create a new node N;

N’s count = 1;

N’s parent link be linked to T;

N’s node-link be linked to the nodes with the same item-

name via the node-link

structure;}

If P is nonempty, Call insert tree (P, N).

CONSTRUCTING FP-TREE GROWTH USING

PROJECTION

FP-growth method is a efficient algorithm to mine frequent

patterns, in spite of long or short frequent patterns. By using

compact tree structure and partitioning-based, divide-and-

conquer searching method, it reduces the search costs

substantially. But just as the analysis in Algorithm and in

the process of FP-tree construction, it is a strict serial

computing process. algorithm performance is related to the

database size, the sum of frequent patterns in the database:

ω. People may think using distributed parallel computation

technique or multi-CPU to solve this problem. But these

methods apparently increase the costs for exchanging and

combining control information , cannot solve this problem

efficiently. Even if adopting multi-CPU technique, raising

the requirement of hardware, (1) we can create a temp

database for storing all the frequent items ordered by the list

of frequent items L. we call this temp database as Projection

Database (or PDB for short), which is used for projecting,

reduce the expensive costs of individual node computation.

(2) we can project the PDB, two columns at a time. One

column is used to computer the count of each different

item, the other (previous) column is used to distinguish the

node’s parent node of current column. By this way, we can

insert one level of nodes into the tree at a time, not compute

frequent items one by one. Then, the algorithm performance

is only related to the depth of tree, namely the number of

frequent items of the longest transaction in the database η,

not the sum of frequent items in the database.

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004139 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1030

(3) because we only project two columns at a time, only

save the information of the current nodes and their parent

nodes, if there exist the case as follows: the current nodes’

parent nodes are identical, but their parent nodes’

 PROPOSED ALGORITHM:

Algorithm PFP-tree construction

Input: A transaction database DB and a minimum support

threshold ξ.

Output: PFP-tree

Method:(1). Scan the transaction database DB once. Collect

the set of frequent items F and their supports. Sort F in

support descending order as L, (2). Select and sort the

frequent items in transaction according to the order of L, the

result is saved in the PDB.

(3). Create the root of an FP-tree, T, and label it as “null”.

Let column number in PDB be j, the initial value of j is 1.

If j = 1

 The process is implemented as follows: first project the

column (j-1) and column (j), then add 1 to j, and project

column (j-1) and column (j) circularly, and so on, until

project the last column of PDB.

Then do { Project the column (1), collect the set of frequent

items and their supports, let the result be [q:n], where q is

the frequent item, n is the count;

Insert these nodes as the root’s child nodes into the PFP-

tree. }

Else do { (1) Project both parent column (j-1) and current

column (j), compare the set of

binary-frequent items and collect their supports1. Let the

result be [px, q:n], where p is the parent frequent item of

column(j-1), x is p’s TAI if it has (if p has no TAI, then let x

be null) and q is the current frequent item of column (j), n

is the count;

(2) Compare the result sets of [px, q:n], if their current

frequent item name, q are identical, then add each px as its

TAI to q, let the result be [px, qy:n], where y=px; Else do

nothing.

(3) Insert the nodes [qy:n] or [q:n] as the child nodes of px

into the PFP-tree and let their node-link be linked to the

nodes with the same item-name via the node-link structure.

(4). Delete all the TAI in the PFP-tree and PDB.

COMPARIOSION ON THE BASIS OF VARING

MINIMUM SUPPORT EXECUTION TIME

0

20

40

60

80

100

120

140

2 3 4 5

minimum support count

ex
ec

u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

FP-growth tree

conditional pattern

FP-growth tree DB

parelle projection

0

20

40

60

80

100

120

140

160

2 3 4 5

minimum support count

ex
ec

u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

FP-growth tree

conditional pattern

FP-growth tree DB

partition projection

0

20

40

60

80

100

120

140

160

180

2 3 4 5

minimum support count

ex
ec

u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

FP-growth tree DB

parallel projectionl

FP-growth tree DB

partition projection

COMPARIOSION ON THE BASIS OF VARING

NUMBER OF RECORDSAND EXECUTION

TIME

Number

of

records

Time taken to

execute

(In millisecond)

FP-GROWTH

Tree with

conditional

Time taken to

execute

(In millisecond)

FP-GROWTH

Tree with Data

base Parallel

projection

algorithm
200 64 87

300 78 97

400 120 140

500 189 200

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004139 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1031

0

50

100

150

200

250

200 300 400 500

minimum support count

e
x
e
c
u

ti
o

n
 t

im
e
 i

n
 s

e
c
o

n
d

s

FP-growth tree

conditional pattern

FP-growth tree DB

parallel projection

Numbe

r of

records

Time taken to

execute

(In millisecond)

FP-GROWTH

Tree with

conditional

Time taken to

execute

(In millisecond)

FPGROWTH

Tree with

Data base

Partition

projection

algorithm
200 66 90

300 72 100

400 127 150

500 197 205

0

50

100

150

200

250

200 300 400 500

minimum support count

e
x
e
c
u

ti
o

n
 t

im
e
 i

n
 s

e
c
o

n
d

s

FP-growth tree

conditional pattern

FP-growth tree DB

parallel projection

Conclusion: Since a transaction is projected to only one

projected database at the database scan, after the scan, the

database is partitioned by projection into a set of projected

Databases, and hence it is called partition projection. The

projected databases are mined in the reversed order of the

list of frequent items. the projected database of the least

frequent item is mined first, and so on. Each time when a

projected database is being processed, to ensure the

remaining projected databases obtain the complete

information, each transaction in it is projected to the aj -

projected database, where aj is the item in the transaction

such that there is no any other item after aj in the list of

frequent items appearing in the transaction. The partition

projection process for the database. The advantage of

partition projection is that the total size of the projected

databases at each level is smaller than the original database,

and it usually takes less memory and I/Os to complete the

partition projection. the processing order of the projected

databases becomes important, and one has to process these

projected databases in a sequential manner. during the

processing of each projected database, one needs to project

the processed transactions to their corresponding projected

databases, which may take some I/O as well. Nevertheless,

due to its low memory requirement, partition projection is

still a promising method in frequent pattern mining

References:

1. Etzioni, O. (1996). The world-wide Web: quagmire or

gold mine? Communications of the ACM, 39 (11), 65–

68.

2. Kosala, R and Blockeel, H. (2000). Web mining

research: a survey. SIGKDD Explorations, July, 2 (1), 1-

15.

3. Brin, S and Page,L. (1998). The anatomy of a large-scale

hyper-textual Web search engine. Computer Networks

and ISDN Systems, 30 (1–7), 107–117.

4. J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, "Sequential

Pattern Mining using A Bitmap Representation,

SIGKDD'02, 2002.

5. J.R. Punin, M.S. Krishnamoorthy, and M.J. Zaki. (2001).

LOGML - Log Markup Language for Web Usage

Mining, in WEBKDD Workshop 2001: Mining Log

Data Across All Customer TouchPoints (with

SIGKDD01), San Francisco, August, pp. 88–112.

6. Srivastava J，Cooley R，and Mukund Deshpanda.

(2000). Web Usage Mining: Discovery and Applications

of Usage Patterns from Web Data. SIGKDD

Explorations, 1 (2), 12-23.

7. Zhang Huiying and Liang, Wei. (2004). An intelligent

algorithm of data pre-processing in Web usage mining,

Proceedings of the World Congress on Intelligent

Control and Automation (WCICA), v 4, WCICA,

p3119-3123.

8. Long Wang. (2004). Christoph Meinel. Behaviour

Recovery and Complicated Pattern Definition in Web

Usage Mining. Web Engineering: 4th International

Conference, ICWE 2004, Munich, Germany, July 26-

30, pp. 531 – 543.

9. Guo, Jiayun, Keelj, Vlado, and Gao, Qigang. (2005).

Integrating Web Content Clustering into Web Log

Association Rule Mining, Advances in Artificial

Intelligence: 18th Conference of the Canadian Society

for Computational Studies of Intelligence, Canada, May

9-11, pp. 182

10. Agrawal, R and Srikant, R. (1994). Fast algorithms for

mining association rules, Proc. of the 20th international

Conference on very large database, Chile, 487-499.

11. Park J S, Chen M -S, and Yu P S. (1995). An effective

Hash-based algorithm for mining association rules,

Proceedings of 1995 ACM-SIGMOD International

Conference on Management of Data (SIGMOD’95). San

Jo se, CA, 175-186.

12. Savasere A ,Omiecinski E, and Navathe S. (1995). An

efficient algorithm for mining association rules in large

databases . VLDB’95 , 432-443.

13. Toivonen H. (1996). Sampling Large Databases for

Association Rules, Proceedings of 22th VLDB Conf.

Bombay, India, 134-145.

http://www.jetir.org/

© 2020 JETIR April 2020, Volume 7, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR2004139 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1032

14. R. Agrawal, and R. Srikant, "Mining Sequential

Patterns, " ICDE, 1995.

15. J. Han, J. Pei, B. Mortazavi-Asi, Q. Chen, U. Dayal, M.

C. Hsu, "FreeSpan: Frequent Pattern-Projected

Sequential Pattern Mining, " SIGKDD'00, 2000

16. J. Pei, J. Han, B. Mortazavi-Asi, H. Pino, "PrefixSpan:

Mining Sequential Patterns Efficiently by Prefix-

Projected Pattern Growth," ICDE'01, 2001.

17. H. Pinto, J. Han, J. Pei, K. Wang, "Multi-dimensional

Sequence Pattern Mining, " CIKM'01, 2001.

18. R. Srikant, and R. Agrawal, "Mining Sequential Patterns:

Generalizations and Performance Improvements,

EDBT, " 1996.

19. M. Garofalakis, R. Rastogi, and K. Shim, "SPIRIT:

Sequential pattern mining with regular expression

constraints, " VLDB'99, 1999.

20. J. Pei, J. Han, J. Wang, H. Pinto, Q. Chen, U. Dayal, M.

C. Hsu, "Mining Sequential Patterns by Pattern-Growth:

The PrefixSpan Approach, " IEEE Transactions on

Knowledge and Data Engineering, Oct, 2004.

21. M. Seno and G. Karypis, "SLPMiner: An Algorithm for

Finding Frequent Sequential Patterns Using Length-

Decreasing Support Constraints," ICDM'02, 2002.

22. J. Pei, J. Han, and W. Wang, "Mining Sequential

Patterns with Constraints in Large Databases," ACM

CIKf, Nov. 2002.

23. J. Wang, and J. Han, "BIDE: Efficient Mining of

Frequent Closed Sequences, ICDE'04, 2004.

24. X. Yan, J. Han, R. Afshar, "CloSpan: Mining Closed

Sequential Patterns in Large Datasets, " SDM'03, 2003.

25.]M. Zaki, "SPADE: An efficient algorithm for mining

frequent sequences. Machine Learning, " 2001.

26 U. Yun and J.J. Leggett, “WSpan: Weighted Sequential

Pattern Mining in Large Sequence Databases,” Proc. Of

the Third Int’l Conf. on IEEE Intelligent Systems, Sep.

2006, pp. 512-517.

27. U. Yun and J.J. Leggett, “WFIM: Weighted Frequent

Itemset Mining with a Weight Range and a Minimum

Weight,” Proc. Of the Fifth SIAM Int’l Conf. on Data

Mining, Apr. 2005, pp. 636- 640.

28. U. Yun and J.J. Leggett, “WLPMiner: Weighted

Frequent Pattern Mining with Length-Decreasing

Support Constraints,” Proc. Of the 9th Pacific-Asia

Conf. on Knowledge Discovery and Data Mining

(PAKDD`05), May 2005, pp. 555-567.

29. U. Yun, “Mining Lossless Closed Frequent Patterns with

Weight Constraints,” Knowledge Based Systems, vol. 20,

Feb. 2007, pp. 86-97.

30. Mahdi Esmaeili and Fazekas Gabor, “Finding

Sequential Patterns from Large Sequence data,” IJCSI,

vol. 7, Issue1,Jan2010, pp. 43-46.

http://www.jetir.org/

