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         Abstract: FP-growth method is a efficient algorithm to mine frequent patterns, in spite of long or short frequent patterns. 

By using compact tree structure and partitioning-based, divide-and-conquer searching method, it reduces the search costs 

substantially. But just as the analysis in Algorithm  , in the process of FP-tree construction, it is a strict serial computing 

process. algorithm performance is related to the database size, the sum of frequent patterns in the database: ω. this is a 

serious bottleneck. People may think using distributed parallel computation technique or multi-CPU to solve this problem. 

But these methods apparently increase the costs for exchanging and combining control information, and the algorithm 

complexity is also greatly increased, cannot solve this problem efficiently. Even if adopting multi-CPU technique, raising 

the requirement of hardware, the performance improvement is still limited. 
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INTRODUCTION: (1). we can create a temp database for 

storing all the frequent items ordered by the list of frequent 

items, Lwe call this temp database as Projection Database 

(or PDB for short), which is used for projecting, reduce the 

expensive costs of individual node computation. 

(2). we can project the PDB, two columns at a time.1 One 

column (called current column) is used to computer the 

count of each different item, the other (previous) column is 

used to distinguish the node’s parent node of current 

column. we can insert one level of nodes into the tree at a 

time, not compute frequent items one by one. Then, the 

algorithm performance is only related to the depth of tree, 

namely the number of frequent items of the longest 

transaction in the database η,  

(3). because we only project two columns at a time, only 

save the information of the current nodes and their parent 

nodes, if there exist the case as follows: the current nodes’ 

parent nodes are identical, but their parent nodes’ parent 

nodes are different, we couldn’t judge how to deal with it. If 

we add their count regarding them as the same node,  

 DEFINITION AND BASE FORMULATION : 

conditional-pattern base (a “sub-database” which consists 

of the set of frequent items occurring with the suffix 

pattern), constructs its (conditional) FP-tree, and performs 

mining recursively with such a tree. The pattern growth is 

achieved via concatenation of the suffix pattern with the 

new ones generated from a conditional FP-tree. Since the 

frequent item set in any transaction is always encoded in the 

corresponding path of the frequent-pattern trees, pattern 

growth ensures the completeness of the result. our method is 

not Apriori-like restricted generation-and-test but restricted 

test only. The major operations of mining are count 

accumulation and prefix path count adjustment, which are 

usually much less costly than candidate generation and 

pattern matching operations performed in most Apriori-like 

algorithms.  the search technique employed in mining is a 

partitioning-based, divide-andconquer method rather than 

Apriori-like level-wise generation of the combinations of 

frequent itemsets. This dramatically reduces the size of 

conditional-pattern base generated at the subsequent level 

of search as well as the size of its corresponding conditional 

FP-tree.  

A performance study has been conducted to compare the 

performance of FP-growth with two representative 

frequent-pattern mining methods, Apriori (Agrawal and 

Srikant, 1994) and Tree Projection (Agarwal et al., 2001),   

FP-growth outperforms the Tree Projection algorithm. our 

Ftree-based mining method has been implemented in the 

DBMiner system and tested in large transaction databases in 

industrial applications. Although FP-growth was first 
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proposed briefly in Han et al. (2000), this paper makes 

additional progress as follows. 

– The properties of FP-tree are thoroughly studied.  we 

point out the fact that, although it is often compact, FP-tree 

may not always be minima. 

– Some optimizations are proposed to speed up FP-growth, 

for   technique to handle single path FP-tree has been further 

developed for performance improvements. 

 – A database projection method has been developed to cope 

with the situation when an FP-tree cannot be held in main 

memory—the case that may happen in a very large 

database. 

– Extensive experimental results have been reported. We 

examine the size of FP-tree as well as the turning point of 

FP-growth on data projection to building FP-tree.  

FREQUENT-PATTERN TREE: DESIGN AND 

CONSTRUCTION 

Let I ={a1, a2, . ..am} be a set of items, and a transaction 

database DB=T1, T2, . . . , Tn, where Ti (i = [1 . . . n]) is a 

transaction which contains a set of items in I . The support1 

(or occurrence frequency) of a pattern A, where A is a set of 

items, is the number of transactions containing A in DB. A 

pattern A is frequent if A’s support is no less than a 

predefined minimum support threshold, ξ . 

A compact data structure can be designed based on the 

following observations:  

(1). Since only the frequent items will play a role in the 

frequent-pattern mining, it is necessary to perform one scan 

of transaction database DB to identify the set of frequent 

items (with frequency count obtained as a by-product). 

(2). If the set of frequent items of each transaction can be 

stored in some compact structure, it may be possible to 

avoid repeatedly scanning the original transaction database. 

(3). If multiple transactions share a set of frequent items, it 

may be possible to merge the shared sets with the number of 

occurrences registered as count.  

database 

(1). If two transactions share a common prefix, according to 

some sorted order of frequent items, the shared parts can be 

merged using one prefix structure as long as the count is 

registered properly. If the frequent items are sorted in their 

frequency descending order, there are better chances that 

more prefix strings can be shared. one may construct a 

frequent-pattern tree as follows. a scan of DB derives a list 

of frequent items, ( f :4), (c:4), (a:3), (b:3), (m:3), (p:3)(the 

number after “:” indicates the support), in which items are 

ordered in frequency descending order.  the root of a tree is 

created and labeled with “null”. 

(1). The scan of the first transaction leads to the 

construction of the first branch of the tree:( f :1), (c:1), (a:1), 

(m:1),(p:1). (2). For the second transaction, since its 

(ordered) frequent item list f, c, a, b,m shares a common 

prefix f, c, awith the existing path f, c, a,m, p the count of 

each node along the prefix is incremented by 1, and one new 

node (b:1) is created and linked as a child of (a:2) and 

another new node (m:1) is created and linked as the child of 

(b:1). (3). For the third transaction, since its frequent item 

list  f, bhares only the node f with the f prefix subtree, f ’s 

count is incremented by 1, and a new node (b:1) is created 

and linked as a child of ( f :3).(4). The scan of the fourth 

transaction leads to the construction of the second branch of 

the tree, (c:1), (b:1), (p:1). (5). For the last transaction, since 

its frequent item list f, c, a,m, pis identical to the first one, 

the path is shared with the count of each node along the path 

incremented by 1. 

Definition  (FP-tree). A frequent-pattern tree (or FP- tree 

in short) is a tree structure 

(1). It consists of one root labeled as “null”, a set of item-

prefix sub trees as the children of the root and a frequent-

item-header table. 

(2). Each node in the item-prefix sub tree consists of three 

fields: item-name, count, and node-link, where item-name 

registers which item this node represents, count registers the 

number of transactions represented by the portion of the 

path reaching this node,  

node-link links to the next node in the FP-tree carrying the 

same item-name, or null if there is none. 

(3). Each entry in the frequent-item-header table consists of 

two fields,  

(1) item-name  

(2) head of node-link (a pointer pointing to the first node in 

the FP-tree carrying the item-name). 

Algorithm  (FP-tree construction). 

Input: A transaction database DB and a minimum support 

threshold ξ. 

Output: FP-tree, the frequent-pattern tree of DB. 

Method: The FP-tree is constructed as follows. 

(1). Scan the transaction database DB once. Collect F, the 

set of frequent items, and the support of each frequent item. 

Sort F in support-descending order as FList, the list of 

frequent items. 
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(2). Create the root of an FP-tree, T , and label it as “null”. 

For each transaction Trans in DB do the following. Select 

the frequent items in Trans and sort them according to the 

order of FList. Let the sorted frequent-item list in Trans be  

where p is the first element and P is the remaining list. Call 

insert tree. The function insert tree is performed as follows. 

If T has a child N such  that N.item-name = p.item-name, 

then increment N’s count by 1; else create a new node N, 

with its count initialized to 1, its parent link linked to T , and 

its node-link linked to the nodes with the same item-name 

via the node-link structure. If P is nonempty, call insert 

tree(P, N) recursively. 

 COMPLETENESS AND COMPAVTNESS OF FP-TREE 

There are several important properties of FP-tree that can be 

derived from the FP-tree construction process. 

Given a transaction database DB and a support threshold ξ . 

Let F be the frequent items in DB. For each transaction T , 

freq(T ) is the set of frequent items in T , freq(T ) = T, F, 

and is called the frequent item projection of transaction T . 

According to the Apriori principle, the set of frequent item 

projections of transactions in the database is sufficient for 

mining the complete set of frequent patterns, because an 

infrequent item plays no role in frequent patterns. 

Based on the FP-tree construction process, for each 

transaction in the DB, its frequent item projection is mapped 

to one path in the FP-tree. For a path a1a2 . . . ak from the 

root to a node in the FP-tree, let cak be the count at the node 

labeled ak and c k be the sum of counts of children nodes of 

ak . According to the construction of the FP-tree, the path 

registers frequent item projections of cak - c k transactions. 

Therefore, the FP-tree registers the complete set of frequent 

item projections without duplication. Based on this lemma, 

after an FP-tree for DB is constructed, it contains the 

complete information for mining frequent patterns from the 

transaction database.  only the FP-tree is needed in the 

remaining mining process, regardless of the number and 

length of the frequent patterns. Based on the FP-tree 

construction process, for each transaction in the DB, its 

frequent item projection is mapped to one path in the FP-

tree. For a path a1 a2 . . . ak from the root to a node in the 

FP-tree, let cak be the count at the node labeled ak and c k 

be the sum of counts of children nodes of ak . the path 

registers frequent item projections of cak - c k transactions 

Therefore, the FP-tree registers the complete set of frequent 

item projections without duplication. Based on this lemma, 

after an FP-tree for DB is constructed, it contains the 

complete information for mining frequent patterns from the 

transaction database.  only the FP-tree is needed in the 

remaining mining process,   FP-tree is a highly compact 

structure which stores the information for frequent-pattern 

mining. Since a single path “a1→a2 →a3→ a4…→” an in 

the a1-prefix sub tree registers all the transactions whose 

maximal frequent set is in the form of “a1→a2 →a3→ 

a4…→ak” for any 1≤k≤n the size of the FP-tree is 

substantially. 

 Connect-4 used in Max Miner (Bayardo, 1998), which 

contains 67,557 transactions with 43 items in each 

transaction, when the support threshold is 50% (which is 

used in the Max Miner experiment. 

    MINING FREQUENT PATTERNS USING FP-TREE 

 

Construction of a compact FP-tree ensures that subsequent 

mining can be performed with a rather compact data 

structure. this does not automatically guarantee that it will 

be highly efficient since one may still encounter the 

combinatorial problem of candidate generation if one 

simply uses this FP-tree to generate and check all the 

candidate patterns.  we study how to explore the compact 

information stored in an FP-tree, develop the principles of 

frequent-pattern growth by examination of our running 

example,  

 PRINCIPLES OF FREQUENT-PATTERN GROWTH 

FOR FP-TREE MINING 

Property (1) (Node-link property). For any frequent item ai 

, all the possible pattern containing only frequent items and 

ai can be obtained by following ai ’s node-links, starting 

from ai ’s head in the FP-tree header. 

Property (2) (Prefix path property). To calculate the 

frequent patterns with suffix ai , only the prefix sub pathes 

of nodes labeled ai in the FP-tree need to be accumulated, 

and the frequency count of every node in the prefix path 

should carry the same count as that in the corresponding 

node ai in the path. 

Property (3) (Fragment growth). Let α be an item set in 

DB, B be α’s conditional pattern base ,β be an item set in B. 

Then the support of α Uβ in DB is equivalent to the support 

of β in B. 

TRADITIONAL FREQUENT PATTERN GROWTH 

ALGORITHM 

Let I  ={a1, a2, … am} be a set of items, and a transaction 

database DB =(T1, T2, …Tn), where Ti (i∈ [1..n]) is a 

transaction which contains a set of items in I. Every 

transaction has a key label, called TID. The support1 (or 
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occurrence frequency) of a pattern A, which is a set of 

items, is the number of transactions containing A in DB. A 

is a frequent pattern if the support of A is no less than a 

predefined minimum support threshold ξ. Given a 

transaction database DB and a minimum support threshold, 

ξ, the problem of finding the complete set of frequent 

patterns is called the frequent pattern mining problem. 

(1). Since only the frequent items will play a role in the 

frequent pattern mining, it is necessary to perform one scan 

of DB to identify the set of frequent items (with frequency 

count obtained as a by-product). 

(2). If we store the set of frequent items of each transaction 

in some compact structure, it may avoid repeatedly scanning 

of DB. 

(3). If multiple transactions share an identical frequent item 

set, they can be merged into one with the number of 

occurrences registered as count. It is easy to check whether 

two sets are identical if the frequent items in all of the 

transactions are sorted according to a fixed order. 

(4). If two transactions share a common prefix, according to 

some sorted order of frequent items, the shared parts can be 

merged using one prefix structure as long as the count is 

registered properly. If the frequent items are sorted in their 

frequency descending order, there are better chances that 

more prefix strings can be shared. Based on the above 

observations, we can get the definition of FP-tree: 

(1). It consists of one root labeled as “null”, a set of item 

prefix subtrees as the children of the root, and a frequent-

item header table. 

(2). Each node in the item prefix subtree consists of three 

fields: item-name, count, and node-link, where item-name 

registers which item this node represents, count registers the 

number of transactions represented by the portion of the 

path reaching this node, and node-link links to the next node 

in the FP-tree carrying the same item-name, or null if there 

is none. 

(3). Each entry in the frequent-item header table consists 

of two fields, (1) item-name and (2)head of node-link, 

which points to the first node in the FP-tree carrying the 

item-name. Based on this definition, we have the following 

FP-tree construction algorithm. 

Algorithm  (FP-tree construction) 

Input: A transaction database DB and a minimum support 

threshold ξ. 

Output: Its frequent pattern tree, FP-Tree 

Method: The FP-tree is constructed in the following steps. 

(1). Scan the transaction database DB once. Collect the set 

of frequent items F and their supports. Sort F in support 

descending order as L, the list of frequent items. 

(2). Create the root of an FP-tree, T, and label it as “null”, 

for each transaction in DB  Select and sort the frequent 

items in transaction according to the order of L. Let the 

sorted frequent item list in transaction be where p is the first 

element and P is the remaining list. Call insert tree . 

Function insert tree  

If T has a child N such that N.item-name = p.item-name 

Then increment N’s count by 1; 

Else do {create a new node N; 

N’s count = 1; 

N’s parent link be linked to T; 

N’s node-link be linked to the nodes with the same item-

name via the node-link 

structure;} 

If P is nonempty, Call insert tree (P, N). 

CONSTRUCTING FP-TREE GROWTH USING 

PROJECTION  

FP-growth method is a efficient algorithm to mine frequent 

patterns, in spite of long or short frequent patterns. By using 

compact tree structure and partitioning-based, divide-and-

conquer searching method, it reduces the search costs 

substantially. But just as the analysis in Algorithm  and  in 

the process of FP-tree construction, it is a strict serial 

computing process.  algorithm performance is related to the 

database size, the sum of frequent patterns in the database: 

ω. People may think using distributed parallel computation 

technique or multi-CPU to solve this problem. But these 

methods apparently increase the costs for exchanging and 

combining control information , cannot solve this problem 

efficiently. Even if adopting multi-CPU technique, raising 

the requirement of hardware, (1) we can create a temp 

database for storing all the frequent items ordered by the list 

of frequent items L. we call this temp database as Projection 

Database (or PDB for short), which is used for projecting, 

reduce the expensive costs of individual node computation. 

(2) we can project the PDB, two columns at a time. One 

column  is used to computer the count of each different 

item, the other (previous) column is used to distinguish the 

node’s parent node of current column. By this way, we can 

insert one level of nodes into the tree at a time, not compute 

frequent items one by one. Then, the algorithm performance 

is only related to the depth of tree, namely the number of 

frequent items of the longest transaction in the database η, 

not the sum of frequent items in the database. 
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(3) because we only project two columns at a time, only 

save the information of the current nodes and their parent 

nodes, if there exist the case as follows: the current nodes’ 

parent nodes are identical, but their parent nodes’  

 PROPOSED ALGORITHM: 

Algorithm PFP-tree construction 

Input: A transaction database DB and a minimum support 

threshold ξ. 

Output: PFP-tree 

Method:(1). Scan the transaction database DB once. Collect 

the set of frequent items F and their supports. Sort F in 

support descending order as L, (2). Select and sort the 

frequent items in transaction according to the order of L, the 

result is saved in the PDB. 

(3). Create the root of an FP-tree, T, and label it as “null”. 

Let column number in PDB be j, the initial value of j is 1.  

If j = 1  

 The process is implemented as follows: first project the 

column (j-1) and column (j), then add 1 to j, and project 

column (j-1) and column (j) circularly, and so on, until 

project the last column of PDB.  

Then do { Project the column (1), collect the set of frequent 

items and their supports, let the result be [q:n], where q is 

the frequent item, n is the count; 

Insert these nodes as the root’s child nodes into the PFP-

tree. } 

Else do { (1) Project both parent column (j-1) and current 

column (j), compare the set of 

binary-frequent items and collect their supports1. Let the 

result be [px, q:n],  where p is the parent frequent item of 

column(j-1), x is p’s TAI if it has (if p has no TAI, then let x 

be null)  and q is the current frequent item of column (j), n 

is the count; 

(2) Compare the result sets of [px, q:n], if their current 

frequent item name, q are identical, then add each px as its 

TAI to q, let the result be [px, qy:n], where y=px; Else do 

nothing.  

(3) Insert the nodes [qy:n] or [q:n] as the child nodes of px 

into the PFP-tree and let their node-link be linked to the 

nodes with the same item-name via the node-link structure.  

(4). Delete all the TAI in the PFP-tree and PDB. 
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COMPARIOSION ON THE BASIS OF VARING 

NUMBER OF RECORDSAND EXECUTION 

TIME 
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algorithm  
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400 120 140 
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Conclusion: Since a transaction is projected to only one 

projected database at the database scan, after the scan, the 

database is partitioned by projection into a set of projected 

Databases, and hence it is called partition projection. The 

projected databases are mined in the reversed order of the 

list of frequent items.  the projected database of the least 

frequent item is mined first, and so on. Each time when a 

projected database is being processed, to ensure the 

remaining projected databases obtain the complete 

information, each transaction in it is projected to the aj -

projected database, where aj is the item in the transaction 

such that there is no any other item after aj in the list of 

frequent items appearing in the transaction. The partition 

projection process for the database. The advantage of 

partition projection is that the total size of the projected 

databases at each level is smaller than the original database, 

and it usually takes less memory and I/Os to complete the 

partition projection. the processing order of the projected 

databases becomes important, and one has to process these 

projected databases in a sequential manner. during the 

processing of each projected database, one needs to project 

the processed transactions to their corresponding projected 

databases, which may take some I/O as well. Nevertheless, 

due to its low memory requirement, partition projection is 

still a promising method in frequent pattern mining 
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